The Antidiabetic Potential of Ruellia tuberosa L.

Keywords: antidiabetic, diabetes, kencana ungu, ruellia tuberosa, metabolic disorders, diabetes mellitus

Abstract

Diabetes mellitus (DM) is a metabolic condition characterized by insufficient insulin production or resistance to insulin, resulting in elevated blood sugar levels. Several synthetic medications, such as Acarbose, Metformin, Glibenclamide, Miglitol, and Voglibose, are presently employed to manage high blood sugar levels. However, these drugs have many side effects, causing some mild to severe adverse effects, including gastrointestinal symptoms, nausea, and vomiting. Hence, it is crucial to research natural products as promising antidiabetic alternatives. This study aimed to provide a comprehensive overview of the potential of Ruellia tuberosa L. as an antidiabetic drug candidate based on the secondary metabolite compounds contained in it. The literature review process involved searching specific keywords in various databases, including Google Scholar, the GARUDA portal, ScienceDirect, PubMed, and DOAJ. All incomplete, duplicates, and pay-access articles were filtered out, and inclusion criteria were applied. The result of this study shows that Ruellia tuberosa L. secondary metabolite compounds are alkaloids, amino acids, ascorbic acids, carbohydrates, flavonoids, glycosides, phenolics, quinoline, saponins, steroids, sterols, tannins, and terpenoids. In silico molecular docking analysis and in vivo testing of Ruellia tuberosa L. extract on streptozotocin (STZ)-induced diabetic Wistar rats show that Ruellia tuberosa L. has the potential to be developed as an antidiabetic alternative drug.

Downloads

Download data is not yet available.

References

Akshatha, J. V., Santosh, K. H. S., Prakash, H. S., & Nalini, M. S. (2021). In silico docking studies of α-amylase inhibitors from the antidiabetic plant Leucas ciliata Benth. and an endophyte, Streptomyces longisporoflavus. 3 Biotech, 11(2). https://doi.org/10.1007/s13205-020-02547-0

Armenia, A., Badriyya, E., Rahmita, S., Rachmaini, F., & Abdillah, R. (2024). Malondialdehyde and TNF-α lowering effects of purified gambier (Uncaria gambir Roxb.) in diabetic rats. Journal of Ayurveda and Integrative Medicine, 15(1). https://doi.org/10.1016/j.jaim.2023.100855

Ciangherotti, C., & Israel, A. (2022). Efecto protector de la raíz de Ruellia tuberosa L. sobre la actividad de las enzimas antioxidants en células Vero sometidas a alta glucosa. Revista de La Facultad de Farmacia, 85(1y2). https://doi.org/10.54305/RFFUCV.2022.85.1-2.11

Debnath, A., Salim, M., Miah, F., Karim, R., Alam, J., & Medicine, I. (2020). Evaluation of Invertase Inhibition Activity and Cytotoxicity of Ethanol and Acetone Extracts of Swietenia macrophyllia Leaves, Syzygium cumini and Trigonella foenum-graecum Seeds. In Traditional & Integrative Medicine. 5(2). http://jtim.tums.ac.irhttp://jtim.tums.ac.ir

Dutta, S., Hazra, K., Ghosal, S., Paria, D., Hazra, J., & Rao, M. M. (2020). Morpho-Anatomical and Phytochemical Characterisation of Traditionally Used Plant Ruellia Tuberosa L. Leaves and Roots. International Journal of Pharmacognosy, 7(1), 12–22. https://doi.org/10.13040/IJPSR.0975-8232.IJP.7(1).12-22

Gokulakrishnan, S., Dharanya, M., & Ilango, K. B. (2023). Standardization and Solvent Comparative Study of Ruellia Tuberosa L. World Journal of Pharmaceutical Research, 12, 1535. https://doi.org/10.20959/wjpr20239-27740

Handayani, S. N., Purwanti, A., Windasari, W., & Ardian, M. N. (2020). Uji Fitokimia dan Aktivitas Antibakteri Ekstrak Etanol Daun Kencana Ungu (Ruellia tuberosa L.). Walisongo Journal of Chemistry, 3(2), 66. https://doi.org/10.21580/wjc.v3i2.6119

Harika, M. N. L. C., & Radhika, P. (2021). Phytosynthesis and Characterization of Silver Nanoparticles From Ruellia Tuberosa (L.): Effect of Physicochemical Parameters. Asian J Pharm Clin Res, Vol 14, 31-38. https://doi.org/10.22159/ajpcr.2021v14i12.42020

Mule V. S, & Naikwade N. S. (2022). Effect of Fruit and Cork Extract of Ficus Lacor Buch Ham on α/β -Glucosidase, α -Amylase, Lipase, Glucose Absorption and Uptake. International Journal of Life Science and Pharma Research. https://doi.org/10.22376/ijpbs/lpr.2021.11.6.p67-76

Navik, P., Tomar, R., & Shrivastava, V. (2022). Role of Alpha Amylase Inhibitor in Diabetes Mellitus. International Journal of Biology, Pharmacy and Allied Sciences, 11(11). https://doi.org/10.31032/ijbpas/2022/11.11.6547

Roosdiana, A., Permata, F. S., Fitriani, R. I., Umam, K., & Safitri, A. (2020). Ruellia tuberosa l extract improves histopathology and lowers malondialdehyde levels and tnf alpha expression in the kidney of streptozotocin-induced diabetic rats. Veterinary Medicine International, 2020. https://doi.org/10.1155/2020/8812758

Roosdiana, A., Sutrisno, Mahdi, C., & Safitri, A. (2019). The Influence of Ethanolic Root Extracts of Ruellia tuberosa L. on Pancreatic Protease Activity and MDA Level of Rats (Rattus norvegicus) Induced by MLD-STZ. IOP Conference Series: Earth and Environmental Science, 217(1). https://doi.org/10.1088/1755-1315/217/1/012041

Safitri, A., Fatchiyah, F., Sari, D. R. T., & Roosdiana, A. (2020). Phytochemical screening, in vitro anti-oxidant activity, and in silico anti-diabetic activity of aqueous extracts of Ruellia tuberosa L. Journal of Applied Pharmaceutical Science, 10(3), 101–108. https://doi.org/10.7324/JAPS.2020.103013

Safitri, A., Ratih, D., Sari, T., Roosdiana, A., & Fatchiyah, F. (2020). Molecular Docking Approach of Potential Alpha Glucosidase Inhibitors from Extracts Compounds of Ruellia tuberosa L. JSMARTech Journal of Smart Bioprospecting and Technology. https://doi.org/10.21776/ub.jsmartech.2020.001.02.1

Safitri, A., Roosdiana, A., Hitdatania, E., & Damayanti, S. A. (2022). In Vitro Alpha-Amylase Inhibitory Activity of Microencapsulated Cosmos caudatus Kunth Extracts. Indonesian Journal of Chemistry, 22(1), 212–222. https://doi.org/10.22146/ijc.68844

Safitri, A., Roosdiana, A., Rosyada, I., Evindasari, C. A., Muzayyana, Z., & Rachmawanti, R. (2019). Phytochemicals screening and anti-oxidant activity of hydroethanolic extracts of Ruellia tuberosa L. IOP Conference Series: Materials Science and Engineering, 509(1). https://doi.org/10.1088/1757-899X/509/1/012017

Safitri, A., Sari, D. R. T., Fatchiyah, F., & Roosdiana, A. (2021). Modeling of aqueous root extract compounds of Ruellia tuberosa L. For alpha-glucosidase inhibition through in silico study. Makara Journal of Science, 25(1), 51–60. https://doi.org/10.7454/mss.v25i1.1223

Safitri, A., Srihardyastutie, A., Roosdiana, A., Aulanni’Am, & Octaviana, E. N. L. (2019). Effects of root extract of ruellia tuberosa l. on kidneys of diabetic rats. Journal of Mathematical and Fundamental Sciences, 51(2), 127–137. https://doi.org/10.5614/j.math.fund.sci.2019.51.2.3

Safitri, A., Sutrisno, Roosdiana, A., & Evindasari, C. A. (2019). Hypoglycaemic activity of hydroethanolic root extracts of Ruellia tuberosa L in diabetic rats. Journal of Physics: Conference Series, 1146(1). https://doi.org/10.1088/1742-6596/1146/1/012020

Safitri, A., Tirto Sari, D. R., Refsilangi, B., Roosdiana, A., & Fatchiyah, F. (2021). Histopathological Profiles of Rats (Rattus norvegicus) Induced with Streptozotocin and Treated with Aqueous Root Extracts of Ruellia tuberosa L. Veterinary Medicine International, 2021. https://doi.org/10.1155/2021/6938433

Susilo, & Farhan, M. (2023). Metabolites Profiling and Biological Activities of Volatile Compounds of Ruellia tuberosa L. Leaves by GC-MS. J Popul Ther Clin Pharmacol , 30(3), e690–e698.

WHO. (2024). Indonesia [Country overview].

Published
2024-04-30
How to Cite
Fatmawati, P., & Afiyah, S. N. (2024). The Antidiabetic Potential of Ruellia tuberosa L. Journal of Noncommunicable Diseases Prevention and Control, 2(1), 10-17. https://doi.org/10.61843/jondpac.v2i1.711

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.